What does building performance “research” mean, exactly? (part 2)

The Scandinavian hospital study illustrates several contributions that building research offers, that energy modeling, commissioning, and system monitoring cannot:

1. Understanding of design intent

The vision of the design team – owners, stakeholders, architects, and engineers – has a permanent impact on the energy performance of a building. Siting, geometry, orientation, envelope materials, organization of the program, spatial configuration, and environmental control system choices all reflect this vision, tempered by constraints of time, money, and building codes, and all have substantial impacts on the energy needed to heat, cool, light, and ventilate the building.

The effects of these key performance-affecting decisions are so decisive, and so long-lasting, that we must understand the forces that shape them in the design process. This element is therefore a cornerstone of building performance research.

2. Systems-level analysis

Buildings operate as complex systems of people, machines, structures, and climates. Since these elements affect building performance as an interacting set, a clear understanding of building performance necessarily requires investigation into the operation of the system as a whole. Energy models do simulate buildings as systems, but their best role is to inform decisions among a limited set of design alternatives; they are definitely not diagnostic tools. To understand the operation, and especially the malfunction, of a real building requires field investigation.

Revealing unexpected activities of occupants, and understanding the origins of these activities, is an especially important aspect of field research. Unprogrammed use of spaces, manual overriding of system controls, and propping openings open or closed are just a few ways that occupants can unwittingly diminish the energy performance of their building; tracing these to their motivations, and then to concrete aspects of the building design or operation, is an essential component of systems-level building research.

3. Pattern discernment through comparison of multiple buildings of a type

Each building is substantially unique: despite common elements, a particular assembly of spaces, materials, climate, program, and occupants is rarely duplicated. This complicates efforts to determine which performance strategies work well, and which don’t, in a particular building type. Yet, as the Scandinavian hospital study shows, patterns do emerge when enough examples of a type are compared.

The seeking of patterns among multiple examples of complex systems has excellent precedents in field ecology (see work by E. Odum and J. Lovelock) and in architecture (C. Alexander, A Pattern Language). Their field techniques and analytical tools are directly applicable to building systems, as well, and should inspire us toward a “comparative building ecology” that illustrates performance patterns, in their contexts, robustly.

4. Controlled experimentation

Although every building is an uncontrolled experiment, some controlled experiments can be conducted within a building, nonetheless. Energy use of analogous spaces that differ only in occupancy or equipment can be compared; conditions in individual spaces can be tracked through varying seasons; passive airflow paths can be obstructed or cleared; light shelf sizes and angles can be varied; setpoints and schedules of mechanical systems can be adjusted, for example. While such adjustments are often undertaken by facilities managers, rarely are the results of individual changes tracked over time to yield meaningful information. Such experiments might also be simulated with models; an intriguing document by the New Buildings Institute presents such analysis for large buildings. Given the limitations of models, however, the realm of controlled experimentation remains an important one for teasing apart relationships among spaces, people, and environmental control systems in real buildings.

5. Publication

The ultimate goal of pure research is to publicize the results, so that a wide audience can learn from them (where “publication” includes meetings, talks, discussion forums, and websites as well as design and science journals). In contrast, commissioning reports and building energy models are private documents; indeed, building designers and owners are understandably reluctant to publish evidence of performance below expectations.

At the same time, the disclosure of design decision pathways, model predictions, operational realities, and performance outcomes would help future design teams immensely. This, therefore, is the most important of the unique contributions that building performance research has to offer: the provision of reliable information, obtained through rigorous investigation and experimentation, unbiased by financial or legal interests, in straightforward, accessible forms with the strength to change common practice.

Advertisements

3 responses to “What does building performance “research” mean, exactly? (part 2)

  1. Have you ever thought about writing an ebook or guest authoring on other websites?
    I have a blog based upon on the same information you discuss and would really like to have you share some stories/information.
    I know my viewers would value your work. If you are even remotely interested, feel free to
    send me an e-mail.

  2. What’s up it’s me, I am also visiting this
    site daily, this web page is genuinely nice and
    the viewers are truly sharing good thoughts.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s